
Weak References

Data Structures and Implementation

Bruno Haible

ILOG GmbH

24 April 2005

What is a Weak Pointer?

● Garbage collection preserves all objects
that are reachable from the root set.

● A weak pointer holds its object without
causing it to be reachable.

What is a Weak Hashtable?

● A weak hash-table holds its key-value pairs
without causing them to be reachable.

● Four kinds:
– :key
– :value
– :key-and-value
– :key-or-value

A Strong Feature

● Adding extra info to sealed objects.
● Memoizing prior results.
● Uniquification.
● Hash consing.
● Avoiding attach/detach protocols.
● Global garbage collection.

Caveats

● Extra time spent in GC
(for W weak pointers:
– O(W²) in some implementations,
– O(W) in other implementations)

Weak Datastructures

● Weak pointer
● Weak “and” relation
● Weak “or” relation
● Weak association (= weak mapping)
● Weak “and” mapping
● Weak “or” mapping
● Weak association list
● Weak hash-table

Primitive Weak Datastructures

● Weak pointers
● Weak :key mappings
● Weak hash-tables

The others can be emulated.

Levels of Support

1.Support for weak pointers.
2.Support for weak :key mappings or weak

hash-tables, with “key not in value”
restriction.

3.Support for weak :key mappings or weak
hash-tables, without restriction.

4.Scalable support for weak :key mappings
or weak hash-tables.

Implementations of Level 1

● Common Lisp: GNU clisp 2.33.80, OpenMCL 0.14.1,
Allegro CL 6.2, LispWorks 4.3, Corman Lisp 1.1,
CMUCL 19a, SBCL 0.8.20

● Scheme: GNU guile 1.7.1, MIT Scheme 7.7.1, BBN
Scheme, MzScheme 205, Scheme48

● Other Lisp: XEmacs 21.4, GNU Emacs 21.1, jlisp
1.03, mindy 1.2

● Java 1.5
● .NET CLR (mono 1.0.1, pnet 0.6.10)
● Smalltalk: GNU Smalltalk 2.1.10
● Python 2.4

Implementations of Level 2

● Common Lisp: GNU clisp 2.33.80, OpenMCL 0.14.1,
Allegro CL 6.2, LispWorks 4.3, CMUCL 19a

● Scheme: GNU guile 1.7.1, MIT Scheme 7.7.1, BBN
Scheme, MzScheme 205

● Other Lisp: XEmacs 21.4, GNU Emacs 21.1
● Java 1.5
● Smalltalk: GNU Smalltalk 2.1.10

Implementations of Level 3

● Common Lisp: GNU clisp 2.33.80, LispWorks 4.3
● Other Lisp: XEmacs 21.4, GNU Emacs 21.1

Implementations of Level 4

● Common Lisp: GNU clisp 2.33.80, LispWorks 4.3
● Other Lisp: XEmacs 21.4, GNU Emacs 21.1

Phases of GC

● Mark phase: Recursively mark all reachable
objects, starting from the root set.

● Sweep phase: Move the marked objects to
their new location, and update all pointers
to point to the new locations. Then free
unused memory pages.

Phases of GC

● Mark phase: Recursively mark all reachable
objects, starting from the root set.

● Weak object phase.
● Sweep phase: Move the marked objects to

their new location, and update all pointers
to point to the new locations. Then free
unused memory pages.

Weak Object Phase
1st Try

● For all weak-pointers:
– If the target object is unmarked, break the weak

pointer.

Implements level 1 and 2.

Weak Object Phase
2nd Try

● For all weak :key mappings:
– If the key is marked, mark the value recursively.

● Repeat until stable.
● For all weak-pointers:

 - If the target object is unmarked, break the weak
pointer.
For all weak :key mappings:
 - If the key is unmarked, break the mapping.

Implements level 3. But: O(W²)

Weak Object Phase
3rd Try

● Precompute the reverse mapping from
weakly pointed object to weak pointer,
as a hash-table for O(1) access.

● Enqueue all marked weak :key mappings.
● Process the queue:

– If the key is marked, mark the value recursively.
While doing that, look up the reverse
mappings. Add the discovered weak objects to
the queue.

Weak Object Phase
3rd Try (2)

● For all weak-pointers:
 - If the target object is unmarked, break the weak
pointer.
For all weak :key mappings:
 - If the key is unmarked, break the mapping.

Implements level 4: O(W)

